Configuration interaction singles based on the real-space numerical grid method: Kohn-Sham versus Hartree-Fock orbitals.
نویسندگان
چکیده
We developed a program code of configuration interaction singles (CIS) based on a numerical grid method. We used Kohn-Sham (KS) as well as Hartree-Fock (HF) orbitals as a reference configuration and Lagrange-sinc functions as a basis set. Our calculations show that KS-CIS is more cost-effective and more accurate than HF-CIS. The former is due to the fact that the non-local HF exchange potential greatly reduces the sparsity of the Hamiltonian matrix in grid-based methods. The latter is because the energy gaps between KS occupied and virtual orbitals are already closer to vertical excitation energies and thus KS-CIS needs small corrections, whereas HF results in much larger energy gaps and more diffuse virtual orbitals. KS-CIS using the Lagrange-sinc basis set also shows a better or a similar accuracy to smaller orbital space compared to the standard HF-CIS using Gaussian basis sets. In particular, KS orbitals from an exact exchange potential by the Krieger-Li-Iafrate approximation lead to more accurate excitation energies than those from conventional (semi-) local exchange-correlation potentials.
منابع مشابه
Fragment-Localized Kohn-Sham Orbitals via a Singles Configuration-Interaction Procedure and Application to Local Properties and Intermolecular Energy Decomposition Analysis.
As for generating localized Hartree-Fock orbitals, we propose a potentially linear-scaling singles-CI scheme to construct fragment-localized density functional theory (DFT) orbitals for molecular systems as water clusters. Due to the use of a deformation step instead of a localization step, the influence of the environment on each separate molecule can be studied in detail. The generated orbita...
متن کاملWavelets for density matrix computation in electronic structure calculation ✩
This paper is concerned with demanding calculations of electronic structures. We give a brief introduction to the basics of electronic structure calculation based on the electronic multi-particle Schrödinger equation. We describe the structures of Hartree– Fock, Kohn–Sham and hybrid models for closed shell systems, the aufbau principle and the self consistent field iteration. While traditional ...
متن کاملOrbitals in Quantum Chemistry
Orbitals, on the one hand, are often considered as auxiliary quantities without physical meaning for various reasons. Slater determinants, e.g., Hartree-Fock or Kohn-Sham determinants, are invariant with respect to unitary transformations of the occupied orbitals. Within densityfunctional theory (DFT) orbitals frequently are considered as quantities that merely generate the electron density but...
متن کاملNatural Orbital Functional for the Many-Electron Problem
The exchange-correlation energy in Kohn-Sham density functional theory is expressed as a functional of the electronic density and the Kohn-Sham orbitals. An alternative to Kohn-Sham theory is to express the energy as a functional of the reduced first-order density matrix or equivalently the natural orbitals. We present an approximate, simple, and parameter-free functional of the natural orbital...
متن کاملThe performance of a family of density functional methods
The results of a systematic study of molecular properties by density functional theory (DFT) are presented and discussed. Equilibrium geometries, dipole moments, harmonic vibrational frequencies, and atomization energies were calculated for a set of 32 small neutral molecules by six different local and gradient-corrected DFT methods, and also by the ab initio methods Hartree-Fock, second-order ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 47 شماره
صفحات -
تاریخ انتشار 2015